An Efficient and Fast Density Conscious Subspace Clustering using Affinity Propagation

نویسنده

  • Joycy K. Antony
چکیده

Subspace clustering is an eminent task to detect the clusters in subspaces. Density-based approaches assume the high-density region in the subspace as a cluster, but it creates density divergence problem. The proposed work improves the performance of Density Conscious subspace clustering (DENCOS) by utilizing the Affinity Propagation (AP) algorithm to detect the local densities for a dataset. Initially, the Affinity Propagation based Sampling Algorithm was used to coarsen the input sparse dataset and choose a small number of f inal representative exemplars. The DENCOS is used to partition those exemplars and finally the cluster assignment of all data points is achieved through their corresponding representative exemplar. On experimentation, it is found that the proposed algorithm outperforms the original DENCOS algorithm and other subspacing algorithms in terms of speed, memory usage and quality of subspace clustering. Index Terms —Data Mining, Data Clustering, Density Conscious Subspace Clustering, Affinity Propagation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Density Conscious Subspace Clustering Method using Top-down and Bottom-up Strategies

Clustering high dimensional data is an emerging research field. Most clustering technique use distance measures to build clusters. In high dimensional spaces, traditional clustering algorithms suffers from a problem called “curse of dimensionality”. Subspace clustering groups similar objects embedded in subspace of full space. Recent approaches attempt to find clusters embedded in subspace of h...

متن کامل

Subspace clustering using affinity propagation

This paper proposes a subspace clustering algorithm by introducing attribute weights in the affinity propagation algorithm. A new step is introduced to the affinity propagation process to iteratively update the attribute weights based on the current partition of the data. The relative magnitude of the attribute weights can be used to identify the subspaces in which clusters are embedded. Experi...

متن کامل

Density Conscious Subspace Clustering for High Dimensional Data using Genetic Algorithms

Clustering has been recognized as an important and valuable capability in the data mining field. Instead of finding clusters in the full feature space, subspace clustering is an emergent task which aims at detecting clusters embedded in subspaces. Most of previous works in the literature are density-based approaches, where a cluster is regarded as a high-density region in a subspace. However, t...

متن کامل

Density Conscious Subspace Clustering for High Dimensional Data using Genetic Algorithms

Clustering has been recognized as an important and valuable capability in the data mining field. Instead of finding clusters in the full feature space, subspace clustering is an emergent task which aims at detecting clusters embedded in subspaces. Most of previous works in the literature are density-based approaches, where a cluster is regarded as a high-density region in a subspace. However, t...

متن کامل

Density Conscious Subspace Clustering for High Dimensional Data using Genetic Algorithms

Clustering has been recognized as an important and valuable capability in the data mining field. Instead of finding clusters in the full feature space, subspace clustering is an emergent task which aims at detecting clusters embedded in subspaces. Most of previous works in the literature are density-based approaches, where a cluster is regarded as a high-density region in a subspace. However, t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011